Skip to contents

Computes a comprehensive confusion matrix and diagnostic performance metrics for binary classification tests.

Usage

diag_test(
  data,
  test,
  ref,
  positive = NULL,
  test_positive = NULL,
  conf.level = 0.95
)

Arguments

data

A data.frame containing the test and reference variables.

test

Unquoted name of the diagnostic test variable (binary).

ref

Unquoted name of the reference standard variable (binary).

positive

Character or numeric. Level representing "Positive" in REFERENCE.

test_positive

Character or numeric. Level representing "Positive" in TEST.

conf.level

Numeric. Confidence level (0-1). Default: 0.95.

Value

An object of class diag_test containing:

  • table: 2x2 confusion matrix

  • stats: Data frame with metrics and CIs

  • labels: List with labels used

  • sample_size: Total valid observations

Details

Confusion Matrix Structure The function creates a 2x2 confusion matrix:

  • TP: True Positives

  • TN: True Negatives

  • FP: False Positives

  • FN: False Negatives

Metrics Calculated

  • Sensitivity, Specificity, PPV, NPV

  • Accuracy, Prevalence

  • Likelihood Ratios, Youden's Index, F1 Score